

SUPAERO

MiCoVol Team: Le Plewb Project

Harshini AICH, Shourya SARKAR, Shouvik BANDHOPADHYAY

DESIGN MISSION

Cortina d'Ampezzo Airport Tirol Plnnsbruck Liechtenstein San Vito (Approach Point) NOBDO. era/ Graubünden/ hest Point 201 Grischun/ Grigioni Trentino-Cortina Alto Adige/ d'Ampezzo Südtire ino Friuli 257 Km Lugano Pordenone Como Lecco Veneto Lomb Vicenza Venezia Brescia Verona **Milan** Lodi Padova Mantova Cremona Pavia Rovigo. Piacenza dria Ferrara

Milan-Malpensa Airport SRN

Google Earth

Data SIO, NOAA, U.S. Navy, NGA, GEBCO mage Landsat / Copernicus Flight Path Distance: 300 km

N

SUITABLE MODELS

Cessna Grand Caravan

- CS-23 certified aircraft
- < 10 passengers

Daher Kodiak

Pilatus PC-12

Beechcraft King Air 90

AND THE WINNER IS...

- 9 passengers
- 4740 kg MTOW
- Range of 3400 km
- Template available in PACELAB APD

KEY ASSUMPTIONS TAKEN

- 2022 technology energy levels considered¹
- Default flight profile analysed:
 - Take-off, climb, flat cruise, descent, landing and taxi
- Sizing done for Milan (LIMC) to Cortina d'Ampezzo (LIDI)
 - Charging/battery swapping facility available
 - Round trip flight not considered

- 1. Change powerplant type
 - Turboprop \rightarrow Electric prop
- 2. Remove fuel tanks
- 3. Add battery compartments
- 4. Reduce payload
 - 9 seats \rightarrow 4 seats

CHANGING THE POWERPLANT TYPE

PLACEMENT & WEIGHT OF FUEL TANKS ON THE PC-12

[1] <u>https://www.pilatus-aircraft.com/en/fly/pc-12</u>
[2] Pacelab APD PC-12 Template Mass Breakdown

BATTERY PLACEMENT

Exact locations as the fuel tanks

To place loads where the wing structure expects loads

Avoid Main Landing Gear Compartment

Minimal interference with rest of aircraft structure & systems

Battery Specifications @ 2022 Technology Levels

Specific energy = 210 Wh/kg Specific power = 1.365 kW/kg

Free Variables

Nominal energy (kWh): design input Battery mass (kg): design output

CONVERGED DESIGN

Objective Design Solution

MASS BREAKDOWN COMPARISON

CREATIVE DESIGN

IMPROVED BATTERY PERFORMANCE

- Objective design was done at 2022 battery and motor technology levels
- What happens if we use expected 2050 technology levels?
- With this improved battery performance, what if the payload capacity is increased to 9 seats?

OTHER TRADEOFF STUDIES

- Increase in **cruise altitude** 13,000 ft → 17,000 ft
 - Increases range by 4 km
 - But higher strain on battery, motor
- Variation in cruise speed
 - Faster cruise means shorter flights
 - Increase in battery nominal energy (and thus, MTOW)
 - Balance between lighter aircraft
 and shorter flight times

 Image: State of the state

THANK YOU!