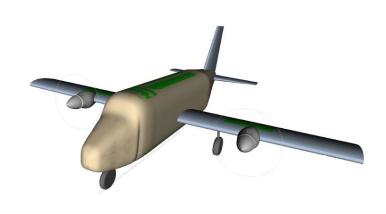


Zephyros FE-17 Team: Anemoi

Created by

Mohaddes Zadeh Jafar Pasqualin Luca Ricci Chiara Sperandio Elisa



We felt the responsibility to make the difference

The past The present The future

A new bird in the sky

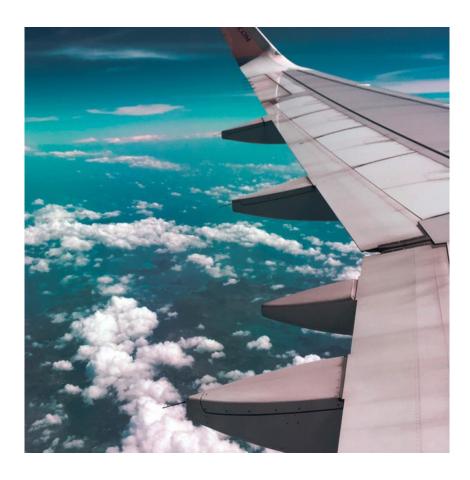
Sustainability

An innovative all-electric solution with zero emissions

Technological Feasibility

A bridge between the present and the future

Zephyros FE-17



Chapter one: Payload

Our aircraft has been designed to accommodate 9 passengers, which is more than twice the minimum number requested.

With this capacity we can **save time** and be **flexible** for other
possible application.

Chapter two: Range

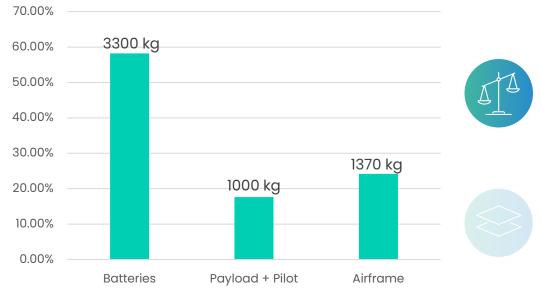
Battery performance

- 3300 kg of batteries installed
- Milan-Cortina and back without recharging using current technology

Extra-range for emergencies

 About 70 kms left in terms of autonomy after the sizing mission

Overall range: 700 km at MTOW

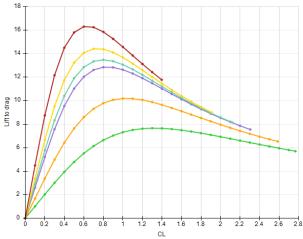


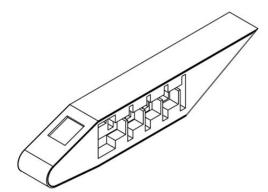
Distribution of weights

Refined analysis to satisfy all the requirements and meet the mission needs

Chapter three: Weight estimation

$$m_f = m_i \left[1 - x \left(1 - \frac{\rho_c}{\rho_{Al}} \right) \right] k$$


An innovative model to estimate composite percentage


Low speed drag polar

Landing gear = Up | Flap deflection takeoff = 15.0 deg | Flap deflection landing = 40.0 deg

Chapter four: Design overview

Optimization of the trajectory

Closed-loop process for wing design

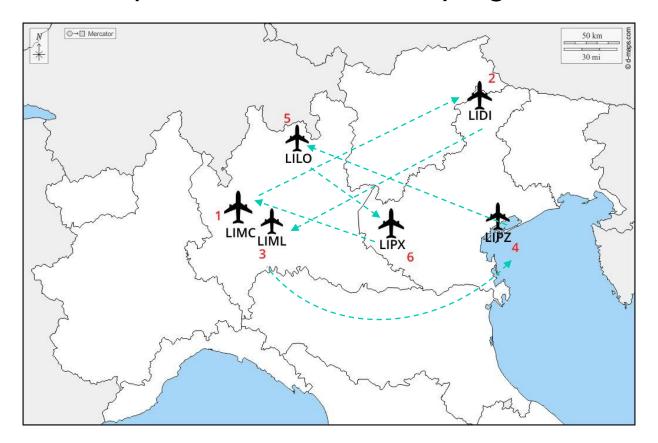
Raw drawing of the fuselage to show spaces

... and a lot of other things!

Creative design project

Now even more improved!

First design concept


Longer distances

- Aircraft design is unchanged
- New battery is added
- 2050 powerplant features

	Units	2022	2050
Battery energy density	[Wh/kg]	210	1873
Battery power density	[W/kg]	1365	5619

Autonomy is now up to 5000 km, like flying from Milan to Dubai

Taking off from Milan and reaching all these airports, we are able to finish the route with still 76% of charge left!

Second design concept

More passengers

- Batteries from 3300 kg to 300 kg
- Operating empty weight increase
- Payload increase

$$MTOW = W_{OE} + payload + batteries$$

$$\uparrow \qquad \uparrow \uparrow \qquad \downarrow \downarrow \downarrow$$

Zephyros FE-17 can now board up to 32 passengers (pilot excluded)

Thank You For Your Attention

Zephyros FE-17 to be continued...